(1-5x)(2x-3)+(2x-3)(x+7)=0

Simple and best practice solution for (1-5x)(2x-3)+(2x-3)(x+7)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1-5x)(2x-3)+(2x-3)(x+7)=0 equation:



(1-5x)(2x-3)+(2x-3)(x+7)=0
We add all the numbers together, and all the variables
(-5x+1)(2x-3)+(2x-3)(x+7)=0
We multiply parentheses ..
(-10x^2+15x+2x-3)+(2x-3)(x+7)=0
We get rid of parentheses
-10x^2+15x+2x+(2x-3)(x+7)-3=0
We multiply parentheses ..
-10x^2+(+2x^2+14x-3x-21)+15x+2x-3=0
We add all the numbers together, and all the variables
-10x^2+(+2x^2+14x-3x-21)+17x-3=0
We get rid of parentheses
-10x^2+2x^2+14x-3x+17x-21-3=0
We add all the numbers together, and all the variables
-8x^2+28x-24=0
a = -8; b = 28; c = -24;
Δ = b2-4ac
Δ = 282-4·(-8)·(-24)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4}{2*-8}=\frac{-32}{-16} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4}{2*-8}=\frac{-24}{-16} =1+1/2 $

See similar equations:

| 4x+3x–15=41 | | 3(y=4)=24 | | 120-21x=9 | | (2x/3)-(5x/4)=1/6 | | 64+64+y=180 | | 32/3=1/4u+4 | | 61-3x=12-9x | | 3+2/3=1/4u+4 | | 4x-3(20-x)=6x-7(10x)-2(2x-5) | | 1,5-6p=0 | | (2x+32/5)=(5x-4/5 | | 0,5w-4=5 | | 70÷a=3.5 | | -3z+8=19 | | -3m+-6=6 | | x^-70x-2250=0 | | 12-1/2a=20 | | 1/2a+4=16 | | 14-5/3x=-1 | | t3=7 | | (50-3x)+7=3.5 | | 5h+8=13 | | 13(-x-6)=7x-15 | | 0.35x0.42=0.147 | | 0.35x042=0.147 | | w–4=18+3w | | x3-5x2+12x+-18=0 | | 5u-10+6=18-6u | | 9x^2-36x+6=0 | | 9x2-36x+6=0 | | Y=5(0.12)^x | | -5=-5-3x+11 |

Equations solver categories