If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-36x+6=0
a = 9; b = -36; c = +6;
Δ = b2-4ac
Δ = -362-4·9·6
Δ = 1080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1080}=\sqrt{36*30}=\sqrt{36}*\sqrt{30}=6\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-6\sqrt{30}}{2*9}=\frac{36-6\sqrt{30}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+6\sqrt{30}}{2*9}=\frac{36+6\sqrt{30}}{18} $
| Y=5(0.12)^x | | -5=-5-3x+11 | | 9(x+10)=-1 | | 2XxY=54 | | 5(x=1)=6x+2 | | 9p-7=39+11 | | 7x=14=2x+11 | | x^2−5x+4=0 | | 8x-8=4(x+3 | | 15t=t-17+3 | | 10(3/5)x+4=10(3/10x+7) | | −5x=5x | | 13x+26=4x+296 | | -5+x=-2+3 | | 3(4+x)×6=16 | | 3X-4Y=-185X-y=-13 | | 4-c=2c=7 | | 5a-12=a-20 | | (w-4)/3+5=6 | | 3^x+3^x(3^1=36 | | 4z+5=z+23 | | 19=−9x+28 | | 13=13x+26 | | a−15=4a− | | 3^x+3^x+1=36 | | 4x+3-2x=3x-7x+15 | | −4k2−8k−3=−3−5k2 | | 2x/7=1/4 | | 2x+7-5x=8+x-13 | | 5x+10=(6x+10)/2 | | 2z/3+5=11 | | X+0.5y-y=20 |