If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2+24=40
We move all terms to the left:
z2+24-(40)=0
We add all the numbers together, and all the variables
z^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| z2+24=40 | | 0.5^(x+2)=7 | | 17-1/3a=2/3a+8 | | 17-1/3a=2/3a+8 | | 17-1/3a=2/3a+8 | | 3y-4=20-y | | S+81=2d | | s+81=s2 | | .2x=8x= | | 9x-17=-3x+19 | | 3*4x=96 | | s2+4s+5=0 | | 8x=32-10x=50 | | 2e+2=6e+10 | | 2e+2=6e+10 | | 2e+2=6e+10 | | 15=m/5.5 | | 15/100=x/2800 | | -6x+1=-6x+1 | | 5x=4x+1 | | x+1.33x=1635 | | x+1.33x=1635 | | x+1.33x=1435 | | x+1.33x=1435 | | x+1.33x=1435 | | x+1.33x=1435 | | x+1.33x=1435 | | x+1.33x=1185 | | x+1.33x=985 | | z2= 36 | | 50x+35x=4425 | | 50x+35x=4425 |