If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s+81=s2
We move all terms to the left:
s+81-(s2)=0
We add all the numbers together, and all the variables
-1s^2+s+81=0
a = -1; b = 1; c = +81;
Δ = b2-4ac
Δ = 12-4·(-1)·81
Δ = 325
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{325}=\sqrt{25*13}=\sqrt{25}*\sqrt{13}=5\sqrt{13}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5\sqrt{13}}{2*-1}=\frac{-1-5\sqrt{13}}{-2} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5\sqrt{13}}{2*-1}=\frac{-1+5\sqrt{13}}{-2} $
| .2x=8x= | | 9x-17=-3x+19 | | 3*4x=96 | | s2+4s+5=0 | | 8x=32-10x=50 | | 2e+2=6e+10 | | 2e+2=6e+10 | | 2e+2=6e+10 | | 15=m/5.5 | | 15/100=x/2800 | | -6x+1=-6x+1 | | 5x=4x+1 | | x+1.33x=1635 | | x+1.33x=1635 | | x+1.33x=1435 | | x+1.33x=1435 | | x+1.33x=1435 | | x+1.33x=1435 | | x+1.33x=1435 | | x+1.33x=1185 | | x+1.33x=985 | | z2= 36 | | 50x+35x=4425 | | 50x+35x=4425 | | 2+x/3=14 | | 2+x/3=14 | | 38=u/3+17 | | x+1.33x=1225 | | x+1.33x=1025 | | x+1.33x=2075 | | x+1.33x=1875 | | x+1.33x=1625 |