If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y(2/5)=3/20
We move all terms to the left:
y(2/5)-(3/20)=0
We add all the numbers together, and all the variables
y(+2/5)-(+3/20)=0
We multiply parentheses
2y^2-(+3/20)=0
We get rid of parentheses
2y^2-3/20=0
We multiply all the terms by the denominator
2y^2*20-3=0
Wy multiply elements
40y^2-3=0
a = 40; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·40·(-3)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*40}=\frac{0-4\sqrt{30}}{80} =-\frac{4\sqrt{30}}{80} =-\frac{\sqrt{30}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*40}=\frac{0+4\sqrt{30}}{80} =\frac{4\sqrt{30}}{80} =\frac{\sqrt{30}}{20} $
| (6x+8)(12x^2-16x-10)=0 | | 0.8r-3.6=0.4 | | 2/x=8/100 | | (9x+2)+Y=180 | | 30^2+b^2=50^2 | | 4t=18-6t | | d-10=10+2d+d | | (x)=3x(4x+2)5 | | -9d+1=10-10d | | h/4-7=10 | | k-45/6=21/4 | | 4t-6+10t=9+9t | | −8x−4+3x+6=27 | | 9y–3–5y=2y–2+9* | | 0=20+32t+-16t2 | | 100^2+b^2=60^2 | | 4t+6t=3 | | p–8=17 | | 0=20+32t+-16t^2 | | 2b+8=-10+10+6b | | 10x−7=4x+11 | | 6-5y=-2-4y | | 4^2x=(1/2)^2x+4 | | 6(x+1)=3(2x+1)+3 | | 7x-7+6x-4=140 | | j=-j+8 | | -106=y+44 | | 42x=(12)2x+4 | | 97x=9=86 | | 2f+8=-7-f | | -9-10n=161 | | 3/4x+7=2x+3 |