0=20+32t+-16t2

Simple and best practice solution for 0=20+32t+-16t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=20+32t+-16t2 equation:



0=20+32t+-16t^2
We move all terms to the left:
0-(20+32t+-16t^2)=0
We add all the numbers together, and all the variables
-(20+32t+-16t^2)=0
We use the square of the difference formula
-(20+32t-16t^2)=0
We get rid of parentheses
16t^2-32t-20=0
a = 16; b = -32; c = -20;
Δ = b2-4ac
Δ = -322-4·16·(-20)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-48}{2*16}=\frac{-16}{32} =-1/2 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+48}{2*16}=\frac{80}{32} =2+1/2 $

See similar equations:

| 100^2+b^2=60^2 | | 4t+6t=3 | | p–8=17 | | 0=20+32t+-16t^2 | | 2b+8=-10+10+6b | | 10x−7=4x+11 | | 6-5y=-2-4y | | 4^2x=(1/2)^2x+4 | | 6(x+1)=3(2x+1)+3 | | 7x-7+6x-4=140 | | j=-j+8 | | -106=y+44 | | 42x=(12)2x+4 | | 97x=9=86 | | 2f+8=-7-f | | -9-10n=161 | | 3/4x+7=2x+3 | | 6t=-7+7t | | 22m-7=7m+38 | | 1x-20/5=-2 | | 2x=9=25 | | 2s+20=8 | | 4x-90=-1 | | 18m+25=15m-5 | | 54^2+72^2=c^2 | | 2x+5)=2(3x-5 | | 2=m6+6 | | -12r=36 | | 2(d+5)=2(3d-5 | | 90+(90-z)+X=180 | | -12=(2/13)(x) | | a^2+16^2=34^2 |

Equations solver categories