x=(x+140)(3x-20)

Simple and best practice solution for x=(x+140)(3x-20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(x+140)(3x-20) equation:



x=(x+140)(3x-20)
We move all terms to the left:
x-((x+140)(3x-20))=0
We multiply parentheses ..
-((+3x^2-20x+420x-2800))+x=0
We calculate terms in parentheses: -((+3x^2-20x+420x-2800)), so:
(+3x^2-20x+420x-2800)
We get rid of parentheses
3x^2-20x+420x-2800
We add all the numbers together, and all the variables
3x^2+400x-2800
Back to the equation:
-(3x^2+400x-2800)
We add all the numbers together, and all the variables
x-(3x^2+400x-2800)=0
We get rid of parentheses
-3x^2+x-400x+2800=0
We add all the numbers together, and all the variables
-3x^2-399x+2800=0
a = -3; b = -399; c = +2800;
Δ = b2-4ac
Δ = -3992-4·(-3)·2800
Δ = 192801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-399)-\sqrt{192801}}{2*-3}=\frac{399-\sqrt{192801}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-399)+\sqrt{192801}}{2*-3}=\frac{399+\sqrt{192801}}{-6} $

See similar equations:

| 4n^2=20+24 | | X=140+3x+20 | | X=140+3x-20 | | -5w+-21=3(-3w+1) | | X=3x+20+140 | | 3x=x+20+140 | | 8-3x-2x=x+26 | | 125m-75m+48250=50500-200m | | 2(r+4)=6 | | X-9=+2-6x | | 1/3(9x+42)-5x=70 | | (3a+7)=(2a-1) | | -35=-5(a-8) | | -4y+6=-4(-4y+2) | | X+140=3(x+20) | | (X/2)+22=6x | | .5=(x/5000000) | | X+140=3x+20 | | 5/(x+4)=4+3/(x-2) | | 5x6=-14 | | 3=(15000000/x) | | X-20=3x+140 | | (X÷2)+22=6x | | 9+c=13 | | .2=(x/2500000) | | x=(x+140)(3x+20) | | -16+3/4x=-13 | | 3x-20=x+140 | | -8t+32=10t-49 | | 3x+20=x+140 | | x^2(4x^2-2x-2)=0 | | 4x-7(3x+6)=5x-9 |

Equations solver categories