x=(x+140)(3x+20)

Simple and best practice solution for x=(x+140)(3x+20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=(x+140)(3x+20) equation:



x=(x+140)(3x+20)
We move all terms to the left:
x-((x+140)(3x+20))=0
We multiply parentheses ..
-((+3x^2+20x+420x+2800))+x=0
We calculate terms in parentheses: -((+3x^2+20x+420x+2800)), so:
(+3x^2+20x+420x+2800)
We get rid of parentheses
3x^2+20x+420x+2800
We add all the numbers together, and all the variables
3x^2+440x+2800
Back to the equation:
-(3x^2+440x+2800)
We add all the numbers together, and all the variables
x-(3x^2+440x+2800)=0
We get rid of parentheses
-3x^2+x-440x-2800=0
We add all the numbers together, and all the variables
-3x^2-439x-2800=0
a = -3; b = -439; c = -2800;
Δ = b2-4ac
Δ = -4392-4·(-3)·(-2800)
Δ = 159121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-439)-\sqrt{159121}}{2*-3}=\frac{439-\sqrt{159121}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-439)+\sqrt{159121}}{2*-3}=\frac{439+\sqrt{159121}}{-6} $

See similar equations:

| -16+3/4x=-13 | | 3x-20=x+140 | | -8t+32=10t-49 | | 3x+20=x+140 | | x^2(4x^2-2x-2)=0 | | 4x-7(3x+6)=5x-9 | | -126=-6(-2r+7) | | -1+x.3=-7 | | 4t-16=3t-22 | | 12x+13x=5 | | 3k^2+16=14k | | 0.01x+0.01=1/100(x+10) | | R=10x-0.25*(x*x) | | -6+3x=-x+3 | | 6(2+9)=3(3-y) | | (2(x-1)+10)=x | | h−(−2.22)=−7.851h | | -10(v+5)=-30 | | 2x+4+3=5x+6 | | (X^4)-(6x^2)+12=7 | | 4n2–1=0 | | x-6+30=21 | | 10z-48-23z=-93 | | y2=–1 | | )-x=7 | | 6(7z+4)=27 | | 3(2-3)=-7x-2(x-3) | | 99-23z=-93 | | 3(5x+2)=-24 | | Y=7-(3x) | | 1/6m=-7 | | x=4.545454545 |

Equations solver categories