x2=22932

Simple and best practice solution for x2=22932 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=22932 equation:



x2=22932
We move all terms to the left:
x2-(22932)=0
We add all the numbers together, and all the variables
x^2-22932=0
a = 1; b = 0; c = -22932;
Δ = b2-4ac
Δ = 02-4·1·(-22932)
Δ = 91728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{91728}=\sqrt{7056*13}=\sqrt{7056}*\sqrt{13}=84\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84\sqrt{13}}{2*1}=\frac{0-84\sqrt{13}}{2} =-\frac{84\sqrt{13}}{2} =-42\sqrt{13} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84\sqrt{13}}{2*1}=\frac{0+84\sqrt{13}}{2} =\frac{84\sqrt{13}}{2} =42\sqrt{13} $

See similar equations:

| -7s+3=-8s+7 | | 8x-50=12x-2 | | 1.05=−7n n= | | (7x+10)=(7x-26)=180 | | 24-(y+2)=5y+10 | | 2b-24=-2+7(4b+8) | | 5(x+5)=14+2x | | 8(v+3)=4v+12 | | 8x+20+11x+25=140 | | -2-4x=-8x-10 | | 1/4x+32=x+16 | | -4K+11k-15=-15+7k | | -3(x-2)=x+2 | | 2x^2-782=400 | | (J(b)=14b+7)(W(b)=7b+42) | | 4p-4=-4p+4 | | 1/2x-1/4=7/8 | | 15x-65=10x+20 | | 2x-6=14.2 | | 6=4/5s | | (7x+10)=(7x-26) | | 6m-3m+3=4m-12+2 | | d=(-3-3)+(5+1) | | (4b-1)=9-b | | 3x+36+90=180 | | 18-6k=6(1+3k)* | | -14+54=-5(x+4) | | −2(n+3)−4=8n= | | 4x-3+x-2=15 | | x2=2156 | | 4x–5=3x–1 | | 2x+6-4x=90 |

Equations solver categories