x2=2156

Simple and best practice solution for x2=2156 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=2156 equation:



x2=2156
We move all terms to the left:
x2-(2156)=0
We add all the numbers together, and all the variables
x^2-2156=0
a = 1; b = 0; c = -2156;
Δ = b2-4ac
Δ = 02-4·1·(-2156)
Δ = 8624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8624}=\sqrt{784*11}=\sqrt{784}*\sqrt{11}=28\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{11}}{2*1}=\frac{0-28\sqrt{11}}{2} =-\frac{28\sqrt{11}}{2} =-14\sqrt{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{11}}{2*1}=\frac{0+28\sqrt{11}}{2} =\frac{28\sqrt{11}}{2} =14\sqrt{11} $

See similar equations:

| 4x–5=3x–1 | | 2x+6-4x=90 | | 32+2x=8(1+3x)+2 | | J(b)=14b+7W(b)=7b+42 | | -6+b=31 | | 86-w=163 | | 8x-10-5x=12-3x+8 | | 3(x-2)-7x=2 | | -8n-4=6-7n | | 25d=1500 | | 3(x-6)=62 | | 2a+24=24 | | 3x-20=-16 | | 0.04x-0.07=0.14-0.03x | | 2u-1=-1 | | 269+x=360 | | 125=25m= | | 2(2x+3)=2(x+-2) | | 1500-d=25 | | 3x-10+6x-8=90 | | 400c+150=1450 | | 8h=7h-6 | | -7x=-8-5x | | 5c+3=7c-9 | | 13+4-x=20 | | 3x-10+6x-8=190 | | 19=3c+20 | | 27x+81=108 | | -45-8x=2x+5x | | 3x+13+109+8x+14=180 | | 6/z=12/8 | | (p-10)=14 |

Equations solver categories