If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4x+32=x+16
We move all terms to the left:
1/4x+32-(x+16)=0
Domain of the equation: 4x!=0We get rid of parentheses
x!=0/4
x!=0
x∈R
1/4x-x-16+32=0
We multiply all the terms by the denominator
-x*4x-16*4x+32*4x+1=0
Wy multiply elements
-4x^2-64x+128x+1=0
We add all the numbers together, and all the variables
-4x^2+64x+1=0
a = -4; b = 64; c = +1;
Δ = b2-4ac
Δ = 642-4·(-4)·1
Δ = 4112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4112}=\sqrt{16*257}=\sqrt{16}*\sqrt{257}=4\sqrt{257}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-4\sqrt{257}}{2*-4}=\frac{-64-4\sqrt{257}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+4\sqrt{257}}{2*-4}=\frac{-64+4\sqrt{257}}{-8} $
| -4K+11k-15=-15+7k | | -3(x-2)=x+2 | | 2x^2-782=400 | | (J(b)=14b+7)(W(b)=7b+42) | | 4p-4=-4p+4 | | 1/2x-1/4=7/8 | | 15x-65=10x+20 | | 2x-6=14.2 | | 6=4/5s | | (7x+10)=(7x-26) | | 6m-3m+3=4m-12+2 | | d=(-3-3)+(5+1) | | (4b-1)=9-b | | 3x+36+90=180 | | 18-6k=6(1+3k)* | | -14+54=-5(x+4) | | −2(n+3)−4=8n= | | 4x-3+x-2=15 | | x2=2156 | | 4x–5=3x–1 | | 2x+6-4x=90 | | 32+2x=8(1+3x)+2 | | J(b)=14b+7W(b)=7b+42 | | -6+b=31 | | 86-w=163 | | 8x-10-5x=12-3x+8 | | 3(x-2)-7x=2 | | -8n-4=6-7n | | 25d=1500 | | 3(x-6)=62 | | 2a+24=24 | | 3x-20=-16 |