If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+x=40
We move all terms to the left:
x2+x-(40)=0
We add all the numbers together, and all the variables
x^2+x-40=0
a = 1; b = 1; c = -40;
Δ = b2-4ac
Δ = 12-4·1·(-40)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{161}}{2*1}=\frac{-1-\sqrt{161}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{161}}{2*1}=\frac{-1+\sqrt{161}}{2} $
| 3x+10+4x-26=180 | | y+60+24=× | | 3(x-1)+4(2×+1)=23 | | 30+8a=180 | | 4×-30+y+60=180 | | 4×-30=×24=y | | X+24+y+60=180 | | (x×x)+6x=-8 | | x×x+6x=-8 | | x^2+(x+5)^2=66 | | x²+(x+5)²=66 | | 6x-80=360 | | 3m^2-3=0 | | X(x+1)=134 | | X(x+1)=67 | | (2x-10)+(5x+50)+x+4x=360 | | 5/3x+7=20 | | x-x/3=6 | | 1/4x-1/2x+5/4x=1-2 | | 21x+30x-2x=-21+15+7 | | -7x-3x+5x=-15-5 | | -8x=40-16 | | 12a14a=5a+21 | | (3x+2)(4+5x)=0 | | (3x+2)(4+5x)=+ | | 7a-3a=3a-26 | | (25^x)+2=5^3x-4 | | x+3-(x+8)=x+4 | | 5/2y+4=2y-1 | | 5y+10=2y | | 7(a-2)+19=0 | | 3(x-3)+5=0 |