If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+1)=134
We move all terms to the left:
X(X+1)-(134)=0
We multiply parentheses
X^2+X-134=0
a = 1; b = 1; c = -134;
Δ = b2-4ac
Δ = 12-4·1·(-134)
Δ = 537
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{537}}{2*1}=\frac{-1-\sqrt{537}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{537}}{2*1}=\frac{-1+\sqrt{537}}{2} $
| X(x+1)=67 | | (2x-10)+(5x+50)+x+4x=360 | | 5/3x+7=20 | | x-x/3=6 | | 1/4x-1/2x+5/4x=1-2 | | 21x+30x-2x=-21+15+7 | | -7x-3x+5x=-15-5 | | -8x=40-16 | | 12a14a=5a+21 | | (3x+2)(4+5x)=0 | | (3x+2)(4+5x)=+ | | 7a-3a=3a-26 | | (25^x)+2=5^3x-4 | | x+3-(x+8)=x+4 | | 5/2y+4=2y-1 | | 5y+10=2y | | 7(a-2)+19=0 | | 3(x-3)+5=0 | | 6(x+4)+2(3x-6)=0 | | x+1/3=4/3. | | (5/12)x=(5/6) | | 3(w+3)w=2(w-1)+3 | | 0.5=1/2(b)+1 | | 15/4=120/x | | x+7/9=81 | | -5+2x=4x-13 | | t^2+9=6^t | | x×2+8=50 | | -4(3v-4)+4v=6(v+3) | | 36=2(y-6)-8y | | 4x+20-2x=18 | | -3b^2+76b-25=0 |