x2+5x+10=10

Simple and best practice solution for x2+5x+10=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+5x+10=10 equation:



x2+5x+10=10
We move all terms to the left:
x2+5x+10-(10)=0
We add all the numbers together, and all the variables
x^2+5x=0
a = 1; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·1·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*1}=\frac{-10}{2} =-5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*1}=\frac{0}{2} =0 $

See similar equations:

| 2x-1/5=2x+1 | | (16*x)^2+(9*x)^2=(147^2) | | (16*x)^2+(9*x)^2-(147^2)=0 | | 4x-7=4x-10 | | X-6/4=x/3 | | ((1/7.535533906+2^(1/2))+22^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=1 | | 14/34=x/244 | | 6x-(2x-10)=24 | | ((1/7.535533906+2^(1/2))+2*2^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=1 | | 5y(y-2)=35 | | ((1/7.535533906+2^(1/2))+2*2^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=4 | | C(100)=0.65x+4 | | ((1/7.535533906+2^(1/2))+2*2^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=8 | | 2/7j-1/7=1/14 | | 52w=700 | | ((2+2^(1/2))+2^(1/2)*x)/((2+2^(1/2))-x)=0 | | ((2+2^(1/2))+2^(1/2)*x)/((2+2^(1/2))-x)=1 | | C(50)=0.65x+4 | | ((2+2^(1/2))+2^(1/2)x)/((2+2^(1/2))-x)=1 | | ((2+2^(1/2))+2^(1/2)x)/((2+2^(1/2))-x)=2 | | (2+2^(1/2)+2^(1/2)x)/(2+2^(1/2)-x)=2 | | 50=3/4k-18 | | t2=16 | | 50=(3/4)x-18 | | -7n-3(8n-8)=148 | | -3x2-9x+12=0 | | (3+x)/(3-x)=1 | | (3+x)/(3-x)=7/5 | | (2+2*x)/(2-x)=8 | | (2+2*x)/(2-x)=4 | | 100x=25x | | 1/2x2-9x+27=0 |

Equations solver categories