5y(y-2)=35

Simple and best practice solution for 5y(y-2)=35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y(y-2)=35 equation:



5y(y-2)=35
We move all terms to the left:
5y(y-2)-(35)=0
We multiply parentheses
5y^2-10y-35=0
a = 5; b = -10; c = -35;
Δ = b2-4ac
Δ = -102-4·5·(-35)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-20\sqrt{2}}{2*5}=\frac{10-20\sqrt{2}}{10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+20\sqrt{2}}{2*5}=\frac{10+20\sqrt{2}}{10} $

See similar equations:

| ((1/7.535533906+2^(1/2))+2*2^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=4 | | C(100)=0.65x+4 | | ((1/7.535533906+2^(1/2))+2*2^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=8 | | 2/7j-1/7=1/14 | | 52w=700 | | ((2+2^(1/2))+2^(1/2)*x)/((2+2^(1/2))-x)=0 | | ((2+2^(1/2))+2^(1/2)*x)/((2+2^(1/2))-x)=1 | | C(50)=0.65x+4 | | ((2+2^(1/2))+2^(1/2)x)/((2+2^(1/2))-x)=1 | | ((2+2^(1/2))+2^(1/2)x)/((2+2^(1/2))-x)=2 | | (2+2^(1/2)+2^(1/2)x)/(2+2^(1/2)-x)=2 | | 50=3/4k-18 | | t2=16 | | 50=(3/4)x-18 | | -7n-3(8n-8)=148 | | -3x2-9x+12=0 | | (3+x)/(3-x)=1 | | (3+x)/(3-x)=7/5 | | (2+2*x)/(2-x)=8 | | (2+2*x)/(2-x)=4 | | 100x=25x | | 1/2x2-9x+27=0 | | -3x+8=4x+8 | | (2+2*x)/(2-x)=16 | | (1+2/3+x)/(1+2/3-x)=2 | | (1+2/3+x)/(1+2/3-x)=16 | | X2-4x+36=0 | | (1+2/3+x)/(1+2/3-x)=4 | | (5/3+x)/(5/3-x)=4 | | 2x2+8x+32=0 | | 7y+9=2y-6 | | (3.4+x)/(3.4-x)=16 |

Equations solver categories