If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2=16
We move all terms to the left:
t2-(16)=0
We add all the numbers together, and all the variables
t^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| 50=(3/4)x-18 | | -7n-3(8n-8)=148 | | -3x2-9x+12=0 | | (3+x)/(3-x)=1 | | (3+x)/(3-x)=7/5 | | (2+2*x)/(2-x)=8 | | (2+2*x)/(2-x)=4 | | 100x=25x | | 1/2x2-9x+27=0 | | -3x+8=4x+8 | | (2+2*x)/(2-x)=16 | | (1+2/3+x)/(1+2/3-x)=2 | | (1+2/3+x)/(1+2/3-x)=16 | | X2-4x+36=0 | | (1+2/3+x)/(1+2/3-x)=4 | | (5/3+x)/(5/3-x)=4 | | 2x2+8x+32=0 | | 7y+9=2y-6 | | (3.4+x)/(3.4-x)=16 | | (5/3+x)/(5/3-x)=16 | | (5/3+x)/(5/3-x)=1 | | (3+x)/(3-x)=1/2 | | (3+x)/(3-x)=2 | | x+-8=124 | | 9-3x-3=2-5x-x+12 | | 15+6x–7=4x–2–1x | | ((4/3)+4x)/((4/3)-x)=1 | | ((4/3)+4x)/((4/3)-x)=4 | | ((4/3)+4x)/((4/3)-x)=16 | | (4/3+4x)/(4/3-x)=16 | | -9a=3 | | (2+2x)/(2-x)=2 |