If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+30x-810000=0
We add all the numbers together, and all the variables
x^2+30x-810000=0
a = 1; b = 30; c = -810000;
Δ = b2-4ac
Δ = 302-4·1·(-810000)
Δ = 3240900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3240900}=\sqrt{900*3601}=\sqrt{900}*\sqrt{3601}=30\sqrt{3601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30\sqrt{3601}}{2*1}=\frac{-30-30\sqrt{3601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30\sqrt{3601}}{2*1}=\frac{-30+30\sqrt{3601}}{2} $
| 5x=(45)^2-(30)^2 | | 4(k+6)=42+2k | | 4x+10+4x+2x-10=180 | | 3y2−21y+36=0 | | (x+4)^=5 | | 4(2v+2)+3v+7=4(v+5)+2v | | 47-22=x | | 2x²-14x-21= | | -6=-6(3p-2) | | y+27=2(9-4y) | | 7+2k=18k | | 3=3u−3 | | 3n2-25=83 | | -19r=-304 | | 2^k=100 | | -9y+33=5(y+1) | | 3x-4=2-10 | | 16/80=8/x | | 5y-5=4(2y-2) | | (5x-25)=3x+65 | | 4(x^2–x)=19 | | 110+(5y)=180 | | y=38(1.108) | | x+19=–3(–x+5) | | 4(x2–x)=19 | | -7(w+2)=-9w-4 | | 2.1x-20+2x=2 | | (a-10/3)=-12 | | -5+8y=18 | | 6x+4=22-3x. | | 3(x-2)=4(2x+5)=4 | | -13.15=x-9.6 |