If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+13x-102=0
We add all the numbers together, and all the variables
x^2+13x-102=0
a = 1; b = 13; c = -102;
Δ = b2-4ac
Δ = 132-4·1·(-102)
Δ = 577
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{577}}{2*1}=\frac{-13-\sqrt{577}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{577}}{2*1}=\frac{-13+\sqrt{577}}{2} $
| |8-7x/5|=11 | | 3x.5-x=x.15-28.3 | | 4y-8=6 | | 7584934576548x4324356=645 | | 51x-14-3x=17+48x-31 | | 5x-3+8x+1=7x+2+6x-4 | | (x+8)^3+7=0 | | (x+8)3+7=0 | | 12+8(x+3)/10=8 | | 3(x*3)=90 | | 2x^2+21x-4.9=0 | | 26x^2-26x+1=0 | | 8/9x^-2/3+10/9x^-5/3=0 | | (1.01)^(12x)=2 | | 0.18(y-9)+0.02y=0.10(4.8-2.1) | | 10x-7+4x+6=3x+7+11x-8 | | 6(j-14)+5(j-18)=2 | | x+1.2x=401.3 | | 7+14s-1=8s+96-4s | | 7v=21 | | 5x2+38x+48=0 | | 5x²+38x+48=0 | | 7-(4p+3)=6(5p-3)-(p-7) | | 12−5/1r=2r+1 | | 8y+3=5y-18 | | 2(2y+1)=3(y-2)+11 | | 3(2n+2)=5(n-1)+9 | | 3(2n=2)=5(n-1)+9 | | 7(n+1)-2=6n+6 | | 0.8n=-40 | | 3x-2=175 | | 6r7+6r6=9r5+9r4 |