x2+(x+5)2=233

Simple and best practice solution for x2+(x+5)2=233 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+(x+5)2=233 equation:



x2+(x+5)2=233
We move all terms to the left:
x2+(x+5)2-(233)=0
We add all the numbers together, and all the variables
x^2+(x+5)2-233=0
We multiply parentheses
x^2+2x+10-233=0
We add all the numbers together, and all the variables
x^2+2x-223=0
a = 1; b = 2; c = -223;
Δ = b2-4ac
Δ = 22-4·1·(-223)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{14}}{2*1}=\frac{-2-8\sqrt{14}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{14}}{2*1}=\frac{-2+8\sqrt{14}}{2} $

See similar equations:

| 10m^2+2m+6=0 | | 3.4x=41/4 | | 2x/15+2x/5=8 | | 9x^2+26=0 | | C(x)=−60x+3x | | -x/5+6=18 | | w(21-w)=104 | | w(21-w)=10w | | C(x)=−60x+3x2 | | (3x-5)=7+x | | 6x2-25x-35=0 | | 3÷(z+1.5)=0.4 | | u^2+8u=3 | | 35=7(3^x) | | 35=7(3x) | | -3(4t-3)+9t=2t-9 | | 5v/6-2=7v/10 | | 56=x8/7 | | (X+1)+x=53 | | 2(c+7)-4(c-2)=0 | | 58=8/7x | | 3(a-3)=2(a+6) | | x+53=15 | | 3(x-4)+8=5(x+2)-9x | | b+4/3=b-4/5 | | 3(x-4)+8=5(x+2)-x | | (1/9)x+40=x | | 8k^2-16k-280=0 | | 5y2−12y−9=0 | | v^2-2=5-2v^2 | | b^2-18=4-2b^2 | | 3(x+1)=14-2x |

Equations solver categories