If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-25x-35=0
a = 6; b = -25; c = -35;
Δ = b2-4ac
Δ = -252-4·6·(-35)
Δ = 1465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{1465}}{2*6}=\frac{25-\sqrt{1465}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{1465}}{2*6}=\frac{25+\sqrt{1465}}{12} $
| 3÷(z+1.5)=0.4 | | u^2+8u=3 | | 35=7(3^x) | | 35=7(3x) | | -3(4t-3)+9t=2t-9 | | 5v/6-2=7v/10 | | 56=x8/7 | | (X+1)+x=53 | | 2(c+7)-4(c-2)=0 | | 58=8/7x | | 3(a-3)=2(a+6) | | x+53=15 | | 3(x-4)+8=5(x+2)-9x | | b+4/3=b-4/5 | | 3(x-4)+8=5(x+2)-x | | (1/9)x+40=x | | 8k^2-16k-280=0 | | 5y2−12y−9=0 | | v^2-2=5-2v^2 | | b^2-18=4-2b^2 | | 3(x+1)=14-2x | | 2y×3/5=18 | | -5x+16=49 | | P=(2;3)yQ=(4;-2) | | 7x+8=-3x-4 | | X^2=4z+8 | | 2(x-4)-3=6x-4(2+x) | | 90+25+16x+1=180 | | 2/9=8/kk= | | 2/9=8/k | | x+74=x+50 | | x+17=x+50 |