x+5-(9/x+5)=10

Simple and best practice solution for x+5-(9/x+5)=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+5-(9/x+5)=10 equation:



x+5-(9/x+5)=10
We move all terms to the left:
x+5-(9/x+5)-(10)=0
Domain of the equation: x+5)!=0
x∈R
We add all the numbers together, and all the variables
x-(9/x+5)-5=0
We get rid of parentheses
x-9/x-5-5=0
We multiply all the terms by the denominator
x*x-5*x-5*x-9=0
We add all the numbers together, and all the variables
-10x+x*x-9=0
Wy multiply elements
x^2-10x-9=0
a = 1; b = -10; c = -9;
Δ = b2-4ac
Δ = -102-4·1·(-9)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{34}}{2*1}=\frac{10-2\sqrt{34}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{34}}{2*1}=\frac{10+2\sqrt{34}}{2} $

See similar equations:

| 4^2+4x+4-4=76 | | -c3–3=-3 | | -7u+2u=20 | | 9-7x=93  | | 10(p+5)=2p | | (x+4)÷-2=(3x+1)÷3 | | x/3+2+x-10=90 | | -1/2=3/2k=3/2 | | 12=p/2+8 | | -10|2x+6|-2=88 | | 2x²–3x-18=0 | | (h-4)(h-10=0 | | 2d+9.7=d-17 | | v/2+4=6 | | 1=7-2r | | -1/2-5=1/2c | | z/3+8=10 | | 9=13-2h | | 6+v/4=9 | | 2x^2+38x=0 | | j/4+11=13 | | 4x-5=40x+4 | | 34/6=9(2x+1)/3 | | 3x+97=97 | | z-9=15 | | 27-2u=u | | 2/12=x/30 | | (x*0.15)-x=23375 | | 2(x+3)=4x–17 | | 17u=9u+40 | | (x-25)(x+3)=0 | | 2(10-x)=12-10(11+12x) |

Equations solver categories