x+3/2x+2x+5/2x=91

Simple and best practice solution for x+3/2x+2x+5/2x=91 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+3/2x+2x+5/2x=91 equation:



x+3/2x+2x+5/2x=91
We move all terms to the left:
x+3/2x+2x+5/2x-(91)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+3/2x+5/2x-91=0
We multiply all the terms by the denominator
3x*2x-91*2x+3+5=0
We add all the numbers together, and all the variables
3x*2x-91*2x+8=0
Wy multiply elements
6x^2-182x+8=0
a = 6; b = -182; c = +8;
Δ = b2-4ac
Δ = -1822-4·6·8
Δ = 32932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32932}=\sqrt{4*8233}=\sqrt{4}*\sqrt{8233}=2\sqrt{8233}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-182)-2\sqrt{8233}}{2*6}=\frac{182-2\sqrt{8233}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-182)+2\sqrt{8233}}{2*6}=\frac{182+2\sqrt{8233}}{12} $

See similar equations:

| x+3/2x+2x+5/2x=91 | | 9+2y=6y | | 3/2x+1/3=4/3 | | 3/2x+1/)=4/3 | | 3/2x+2x+5/2x=91 | | (3)/(2)x+(1)/(3)=(4)/(3) | | 32x-120x=13 | | 1/5x^²-9/20=0 | | 0.4(2-x)+6=x | | 2x+0.05=0.45 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | x-3+5x=12 | | 2.4x-0.3=1+1.1x | | 2.4x-0.3=1+1.1x | | 2.4x-0.3=1+1.1x | | 2.4x-0.3=1+1.1x | | 32+2x=35 | | 32+2x=35 | | 32+2x=35 |

Equations solver categories