x+1/2x+30=4x+110

Simple and best practice solution for x+1/2x+30=4x+110 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+1/2x+30=4x+110 equation:



x+1/2x+30=4x+110
We move all terms to the left:
x+1/2x+30-(4x+110)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+1/2x-4x-110+30=0
We multiply all the terms by the denominator
x*2x-4x*2x-110*2x+30*2x+1=0
Wy multiply elements
2x^2-8x^2-220x+60x+1=0
We add all the numbers together, and all the variables
-6x^2-160x+1=0
a = -6; b = -160; c = +1;
Δ = b2-4ac
Δ = -1602-4·(-6)·1
Δ = 25624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25624}=\sqrt{4*6406}=\sqrt{4}*\sqrt{6406}=2\sqrt{6406}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-2\sqrt{6406}}{2*-6}=\frac{160-2\sqrt{6406}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+2\sqrt{6406}}{2*-6}=\frac{160+2\sqrt{6406}}{-12} $

See similar equations:

| 1/3p+2/5=4/7 | | 3(5g-15)-15g+45=0 | | 20x-12=20x-3 | | |3x+3|=13 | | 7z2=252 | | x+30=4x+110 | | (2x+1)=83 | | 5c-3=3c+5 | | (x+20)=47 | | 18=5m+ | | 14.1k+19.26=-5.4k-19.74 | | −1=−2x−(−x)+3 | | 84=-6(2n-4) | | 6t-5=2-(7-6t) | | -1/3(x-15)= | | 7(x+3)=7x+14 | | x^2(0.13x)+300000=0 | | 7n2=448 | | (g-6)=2 | | x^2(0.13x)+300,000=0 | | 2h-6/4=16 | | 11=3(y-7)-7y | | 3(4x-2)-4=2(3x-4) | | x+0.5x=16.2 | | n+4n-22=77n | | .2+.66x=1+.8x | | X-20=-2y-8 | | 5x=1/18 | | -2c=-7-3c | | -2c=-7−3c | | (3x+14)°=(7x-4)° | | 4+8f=9f |

Equations solver categories