x+(x-35)+1/2x+x-46=360

Simple and best practice solution for x+(x-35)+1/2x+x-46=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x-35)+1/2x+x-46=360 equation:



x+(x-35)+1/2x+x-46=360
We move all terms to the left:
x+(x-35)+1/2x+x-46-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2x+(x-35)+1/2x-406=0
We get rid of parentheses
2x+x+1/2x-35-406=0
We multiply all the terms by the denominator
2x*2x+x*2x-35*2x-406*2x+1=0
Wy multiply elements
4x^2+2x^2-70x-812x+1=0
We add all the numbers together, and all the variables
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $

See similar equations:

| 88=2x(x+9) | | 1-2x+6=9 | | 40x+16=-4x+148 | | (x+2)/9=2-(x+4)/2 | | x2+9x+45=0 | | -3x^2-5x=8 | | |x-14|=10 | | -8.75x+14=-5.25-35 | | 5.5+u=9/4 | | 3b−b=8 | | -9x=+3x+18 | | 88=2x(x-9) | | 7x/x-60=1/3 | | 3+5a+8a=-10 | | 5(-2x+7)+3=-10x | | 7x-11=2/5(15x-10) | | Z=(2-3j)(3+4j) | | 3.9r=17 | | 4x+3x=2x+45 | | 8p-5=p+9 | | -3=4+8p-8p | | 2/5k-1=3 | | Y=x^-2x+1 | | (7x+5)+(9x-5)=180 | | -1+3k=8 | | 1/2x+2=-2 | | .75x-1=1.25x | | X-56=4(8-2x) | | 4x+2(x+4)=-(-x+12) | | (-21a)+(28a)-6=-10.2 | | x-13x=0 | | 600=125x+70 |

Equations solver categories