Z=(2-3j)(3+4j)

Simple and best practice solution for Z=(2-3j)(3+4j) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Z=(2-3j)(3+4j) equation:



=(2-3Z)(3+4Z)
We move all terms to the left:
-((2-3Z)(3+4Z))=0
We add all the numbers together, and all the variables
-((-3Z+2)(4Z+3))=0
We multiply parentheses ..
-((-12Z^2-9Z+8Z+6))=0
We calculate terms in parentheses: -((-12Z^2-9Z+8Z+6)), so:
(-12Z^2-9Z+8Z+6)
We get rid of parentheses
-12Z^2-9Z+8Z+6
We add all the numbers together, and all the variables
-12Z^2-1Z+6
Back to the equation:
-(-12Z^2-1Z+6)
We get rid of parentheses
12Z^2+1Z-6=0
We add all the numbers together, and all the variables
12Z^2+Z-6=0
a = 12; b = 1; c = -6;
Δ = b2-4ac
Δ = 12-4·12·(-6)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$Z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-17}{2*12}=\frac{-18}{24} =-3/4 $
$Z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+17}{2*12}=\frac{16}{24} =2/3 $

See similar equations:

| 3.9r=17 | | 4x+3x=2x+45 | | 8p-5=p+9 | | -3=4+8p-8p | | 2/5k-1=3 | | Y=x^-2x+1 | | (7x+5)+(9x-5)=180 | | -1+3k=8 | | 1/2x+2=-2 | | .75x-1=1.25x | | X-56=4(8-2x) | | 4x+2(x+4)=-(-x+12) | | (-21a)+(28a)-6=-10.2 | | x-13x=0 | | 600=125x+70 | | 3x-7=8+3x | | x+2x+34=180 | | 9+2(5h+3)=13h | | -9+3x=3^3 | | 39,000+10x=21,000+11x | | 108(t-20)+108t=t(t-20) | | 9(n+6)=2(n+6) | | -3(x-2)-2=13 | | 2x-6x-5-11=0 | | (3x+7)+(6x-8)=180 | | 5.9x+2.9=2.3x+11.9 | | 15/2=8/7x | | 1/3(w)+3=2/3(w)-5 | | 2x+35°+3x+25°+x=180° | | 26+6=x | | 2.25x+15=x-10 | | 6(x=7)=6x=-18 |

Equations solver categories