If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+(x)2=120
We move all terms to the left:
x+(x)2-(120)=0
We add all the numbers together, and all the variables
x^2+x-120=0
a = 1; b = 1; c = -120;
Δ = b2-4ac
Δ = 12-4·1·(-120)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{481}}{2*1}=\frac{-1-\sqrt{481}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{481}}{2*1}=\frac{-1+\sqrt{481}}{2} $
| (2x-6)/(x–3)=14-x | | 3x+12=12x+12 | | 4×+9y=59 | | 6+4y=3y-1+5 | | 6x^2+12-48=0 | | 0=-0.04x^2+1.3x+116 | | -56=-0.04x^2+1.3x+56 | | 3^x^2^-^3^x=81 | | x+3(x+2)=9x | | 6-5t/4=3t+1 | | X^2+5x+6=9x | | x^2+3=172 | | 5z^2-9=46 | | 9a^2/3a=3 | | 9a^2/3a=7 | | 1-4x^2=8 | | 9a^2/3a=1 | | A=3.14x2.1 | | 2/3(5x+4)=-24 | | 4^(x)=0.25 | | y=-143.3(3)^2+1823.3(3)+6820 | | y=-416.72(3)^2+4416.7(3)+8500 | | X-1/6=x+4/5 | | F(5)=-5x-3 | | d/8=18/24 | | 15t=70(t-2.5) | | 4(4x-2)=7+x | | 7(x-3)=2(2x-2) | | (5x–1)(2x–6)=0 | | 2x2+2x−180=0 | | x3+22=86 | | x+(-x+110)=110 |