If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+8)=8(8+x+12)
We move all terms to the left:
x(x+8)-(8(8+x+12))=0
We add all the numbers together, and all the variables
x(x+8)-(8(x+20))=0
We multiply parentheses
x^2+8x-(8(x+20))=0
We calculate terms in parentheses: -(8(x+20)), so:We get rid of parentheses
8(x+20)
We multiply parentheses
8x+160
Back to the equation:
-(8x+160)
x^2+8x-8x-160=0
We add all the numbers together, and all the variables
x^2-160=0
a = 1; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·1·(-160)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*1}=\frac{0-8\sqrt{10}}{2} =-\frac{8\sqrt{10}}{2} =-4\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*1}=\frac{0+8\sqrt{10}}{2} =\frac{8\sqrt{10}}{2} =4\sqrt{10} $
| 4x/12+50=3x/12 | | 3/4x+5=65 | | 5(x+2)+16=2(×-2) | | -1/7(x-7/3x)=-4 | | -1/7(x-7/3)=-4 | | x=-16x^2+18x | | 3/9p-3=1/8p-5 | | t=-16t^2+50 | | 2x(3x-6)+4x-2=8+2x | | 5x=2.15 | | y-3/4=-1/2 | | 2(u+3)-6u=-14 | | 8x/12=3x/12+1 | | 8x-2=12x+22 | | 6(2-d)=9(d+4) | | x/2+x/6=x/4+1 | | 8x-2+120+12x+22=0 | | 8/u+3=6/7 | | -3w+1/2=-1/2w-1/5 | | 2x^-22x+36=0 | | 5w+3/6=w-9/3+5 | | T4(3x+2)=-16 | | 6x+1=3×+37 | | 2x-6x=2x-12 | | 3x^2-22x-31=0 | | 11(t-2)+7t=6(3t+3)-12 | | (18+x)=(4x-3) | | .029(.30+x)=60 | | X/7+x=9/7 | | 5x-6+11x-42=48 | | 0.5(x-2)-0.8(x+2)=-0.3x-0.6 | | F(x)=(5-2x/3x-1) |