x(x+4x)=7(7+x+3)

Simple and best practice solution for x(x+4x)=7(7+x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+4x)=7(7+x+3) equation:



x(x+4x)=7(7+x+3)
We move all terms to the left:
x(x+4x)-(7(7+x+3))=0
We add all the numbers together, and all the variables
x(+5x)-(7(x+10))=0
We multiply parentheses
5x^2-(7(x+10))=0
We calculate terms in parentheses: -(7(x+10)), so:
7(x+10)
We multiply parentheses
7x+70
Back to the equation:
-(7x+70)
We get rid of parentheses
5x^2-7x-70=0
a = 5; b = -7; c = -70;
Δ = b2-4ac
Δ = -72-4·5·(-70)
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3\sqrt{161}}{2*5}=\frac{7-3\sqrt{161}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3\sqrt{161}}{2*5}=\frac{7+3\sqrt{161}}{10} $

See similar equations:

| 3(5x-2)=4(5x+6) | | x^2=5(15+5) | | 3(a-4)=12a-6(2-a) | | 4(2x+4)=14 | | 4(3n+3)=(9(8n+9)+4 | | 8x-20=8x+8 | | 9*2=x*x+3 | | |x=24|+5x | | |x+24|=5x | | x+14+4x-9=180 | | 3(6x+)=-30 | | 19=x+13 | | 0=-2t^2+12t+32 | | 5x+9+7x-9=180 | | 3(x-8)=x+12 | | (3x-6)(2x-7)+4(x-5)=0 | | 5x+21=4x | | -4x+10+x=-20+7x | | (2+2x)=(6+9x) | | (4x-7)(2x+9)-2x(x+3)=0 | | -4x+7x-2=2x+15 | | 12x+34=8x-16 | | -66=6(x=9) | | 6x+16=2x-6 | | 2^2=x(6+x) | | -19-76=20x-76 | | 6x=8+4 | | 8^2=x(12+x) | | 24.6+3a/4=12 | | 5(x-5=60 | | -12x=2x-7 | | 5y^2-33y=52=0 |

Equations solver categories