9*2=x*x+3

Simple and best practice solution for 9*2=x*x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9*2=x*x+3 equation:



9*2=x*x+3
We move all terms to the left:
9*2-(x*x+3)=0
We add all the numbers together, and all the variables
-(x*x+3)+18=0
We get rid of parentheses
-x*x-3+18=0
We add all the numbers together, and all the variables
-x*x+15=0
Wy multiply elements
-1x^2+15=0
a = -1; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-1)·15
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*-1}=\frac{0-2\sqrt{15}}{-2} =-\frac{2\sqrt{15}}{-2} =-\frac{\sqrt{15}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*-1}=\frac{0+2\sqrt{15}}{-2} =\frac{2\sqrt{15}}{-2} =\frac{\sqrt{15}}{-1} $

See similar equations:

| |x=24|+5x | | |x+24|=5x | | x+14+4x-9=180 | | 3(6x+)=-30 | | 19=x+13 | | 0=-2t^2+12t+32 | | 5x+9+7x-9=180 | | 3(x-8)=x+12 | | (3x-6)(2x-7)+4(x-5)=0 | | 5x+21=4x | | -4x+10+x=-20+7x | | (2+2x)=(6+9x) | | (4x-7)(2x+9)-2x(x+3)=0 | | -4x+7x-2=2x+15 | | 12x+34=8x-16 | | -66=6(x=9) | | 6x+16=2x-6 | | 2^2=x(6+x) | | -19-76=20x-76 | | 6x=8+4 | | 8^2=x(12+x) | | 24.6+3a/4=12 | | 5(x-5=60 | | -12x=2x-7 | | 5y^2-33y=52=0 | | 3(x-1)=(3x)-3 | | 20x-50=10x-250 | | 1) 10n+2=7n+14 | | 1) 7n+5=5n+25 | | b2+7b=0 | | 8x+6+8=7x-46 | | 8-3x=2x+3 |

Equations solver categories