If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+100)-196=0
We multiply parentheses
x^2+100x-196=0
a = 1; b = 100; c = -196;
Δ = b2-4ac
Δ = 1002-4·1·(-196)
Δ = 10784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10784}=\sqrt{16*674}=\sqrt{16}*\sqrt{674}=4\sqrt{674}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-4\sqrt{674}}{2*1}=\frac{-100-4\sqrt{674}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+4\sqrt{674}}{2*1}=\frac{-100+4\sqrt{674}}{2} $
| 0.22(10,000)-0.07y=0.03(y+10,000) | | 2×+5y=15 | | 6x*2+7x+12=0 | | 3x+3+x=55 | | -v+1=5v+9 | | 3x+3+3x=55 | | x^2+7x=−10 | | 3x+3=55 | | 3/2z=-9/5 | | 0.6*x+5=0.15 | | 21x*2+29x-10=0 | | 4(6-x)=2(x+1)+2(x+1)+x+x | | 9v+36=13v | | Y-11=2y-9 | | 63-4u=5u | | 24+v=4v | | 7x*2+2x-5=0 | | Y^3-4y2+6y-5=0 | | 2p-1=16 | | n8.n2=n10 | | (7/8)t-(1/7)=-(1/8)t-(15/7) | | x^2-x/3=2x-4/5 | | 21x+29x-10=0 | | (48,26)²=(16y)²+(9y)² | | 328=1/2h(20+21) | | 48,26²=(16y)²+(9y)² | | 2^x-7=3^2x-4 | | 3x+15/6=3x+31/10 | | 5/6=1/6+4/5z | | 5(x-2)=(3x+2)(x-2) | | -4g=32. | | -2.3+1.4q=-7.9 |