5(x-2)=(3x+2)(x-2)

Simple and best practice solution for 5(x-2)=(3x+2)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(x-2)=(3x+2)(x-2) equation:



5(x-2)=(3x+2)(x-2)
We move all terms to the left:
5(x-2)-((3x+2)(x-2))=0
We multiply parentheses
5x-((3x+2)(x-2))-10=0
We multiply parentheses ..
-((+3x^2-6x+2x-4))+5x-10=0
We calculate terms in parentheses: -((+3x^2-6x+2x-4)), so:
(+3x^2-6x+2x-4)
We get rid of parentheses
3x^2-6x+2x-4
We add all the numbers together, and all the variables
3x^2-4x-4
Back to the equation:
-(3x^2-4x-4)
We add all the numbers together, and all the variables
5x-(3x^2-4x-4)-10=0
We get rid of parentheses
-3x^2+5x+4x+4-10=0
We add all the numbers together, and all the variables
-3x^2+9x-6=0
a = -3; b = 9; c = -6;
Δ = b2-4ac
Δ = 92-4·(-3)·(-6)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3}{2*-3}=\frac{-12}{-6} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3}{2*-3}=\frac{-6}{-6} =1 $

See similar equations:

| -4g=32. | | -2.3+1.4q=-7.9 | | x=4,x^2-2x+4= | | x+1/6=1/3+x-7/2 | | 2(x-1)^2+5(x-1)-3=0 | | 4/5(30x+45)-5=-2/3(18x-15) | | |4x-1|=|3x-2| | | 4(x-6)-6(x-4)=x+5-(x-3) | | (5x+3)^2=x+3 | | (5x+3)^2=x-5 | | 6x-1=3+5x | | 15x-(4x-5)=16 | | 54x+12=10x+8 | | 17x^2-106x+160=0 | | 55+38x=19+36x | | 3(x-2)+1=6x-3x+1 | | 29x+14=10x+10 | | 44+16x=20+10x | | 7x/8-5=44 | | 36+45x=25x+52 | | 20+35x=5x+50 | | 23+16x=30+4x | | 4x+3=2(2x+3)-3 | | x²+13x+42=0 | | 5r^+5r-26=0 | | 50x-20=45+30x | | x^2-10x-(21/10)=0 | | 30+20x=26+18x | | 1/2z-2=26 | | -3w+19=-5(w-7) | | 1000x^2-100x-21=0 | | 4(v-7)=9v-3 |

Equations solver categories