If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(2x+2)=154
We move all terms to the left:
x(2x+2)-(154)=0
We multiply parentheses
2x^2+2x-154=0
a = 2; b = 2; c = -154;
Δ = b2-4ac
Δ = 22-4·2·(-154)
Δ = 1236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1236}=\sqrt{4*309}=\sqrt{4}*\sqrt{309}=2\sqrt{309}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{309}}{2*2}=\frac{-2-2\sqrt{309}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{309}}{2*2}=\frac{-2+2\sqrt{309}}{4} $
| (7x-7)+(3x+45)=180 | | 9=d÷14 | | 2t/t-5+5/3t=-4/3 | | x2+2x-5.9=0 | | 2(n-13)=8 | | (y+10)=41 | | 9e-40=3+2e | | -16=17s-13s | | x+x=44 | | 9(w-8)=3w-24 | | 3a-8=21 | | 3x+42=8x-3 | | 4(u-6)-7u=21 | | -3.4e=-3.14 | | 5x+23=9x-5 | | 10x+4+6x+12=45 | | 12.5×n=32 | | 10q^2-7q-12=0 | | 7x+18+2x+33=60 | | 2x+33+7x+18=45 | | 1.)18x-30-7x=25 | | 7x+18+2x+33=45 | | 5x-10=7x+13 | | 54/h+28=74 | | x+2x+1=31/4+x | | S=x(40–2x)+x(40–2x)+x(80–2x)+x(80–2x)+x(80–2x)(40–2x) | | |5x-10|=|7x+13| | | 2(a-4)=4a-(2a/4) | | b(3b+1)=10 | | (4x+1)=(5x+2) | | 8x+5/8=9x+7/8 | | X=2-(y-4)^(1/3) |