If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b(3b+1)=10
We move all terms to the left:
b(3b+1)-(10)=0
We multiply parentheses
3b^2+b-10=0
a = 3; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·3·(-10)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*3}=\frac{-12}{6} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*3}=\frac{10}{6} =1+2/3 $
| (4x+1)=(5x+2) | | 8x+5/8=9x+7/8 | | X=2-(y-4)^(1/3) | | 6x=4x+3.38 | | 109x^2+900=0 | | -7u+3(u+7)=33 | | 1.9r+9=1.7r+17 | | 2(x-1)-8=5x-3(3+x) | | -3x-6=x+14 | | 5x+39=x+11 | | (4x)(x)=90 | | 6+6x-7x-4x=45 | | 5x^-x=0 | | 3(5x+2)-4(8x-6=) | | 4(x+6)+7x=-9 | | 2y+5y=0 | | 4x(4)=90 | | p2=0.81 | | (4y-13)+105=180 | | 8t2+4t–3=0 | | x—5=2 | | 2w-30=-2(w-5) | | 2/3w+4=2/5w | | 3(x+1)-1=6x-3(1+x) | | 5x-x+1=5-2x | | (2x+5)+(5x–13)=90 | | 5x-x+1=5x-2x | | (2x+5)+(5x–13)=90° | | 3×+1=5+y | | x(x-6)=180 | | 2/5n+1/10=1.5+4 | | (3x-5-x)=x-3 |