If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-6)=180
We move all terms to the left:
x(x-6)-(180)=0
We multiply parentheses
x^2-6x-180=0
a = 1; b = -6; c = -180;
Δ = b2-4ac
Δ = -62-4·1·(-180)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{21}}{2*1}=\frac{6-6\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{21}}{2*1}=\frac{6+6\sqrt{21}}{2} $
| 2/5n+1/10=1.5+4 | | (3x-5-x)=x-3 | | -15.8=u/5-3.3 | | 3.2=28.8-2x | | 3,6y=5.4+3.3y | | 5×+3x+7=73 | | u/7+4=-4.96 | | 2/3(2x+1/2)=-1+2x | | X÷3=x÷6+4 | | 4x+5-5x=0 | | 9=4+3x-3x | | 10=2/9y | | −6x−7=−9 | | 4/3=2/3x | | 4/9-z/7=1/63 | | x+49+x+51=90 | | 4/3=2/3c | | x+49+x+51=180 | | -21=-3/8w | | -2x-9=2x+27 | | x=(80–2x)(40–2x) | | 7^2x-2*7^x=15 | | 11/3=2/3x | | -c^2=9-6c | | (5y-18)=180 | | 11/6y=1/3 | | -9m+5m=15-27 | | 12(3-x)=24 | | -27.5–m=21.1 | | 25x^-35x-30=0 | | c-5=3-5 | | 9m=1/6 |