t2+t-20=0

Simple and best practice solution for t2+t-20=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t2+t-20=0 equation:



t2+t-20=0
We add all the numbers together, and all the variables
t^2+t-20=0
a = 1; b = 1; c = -20;
Δ = b2-4ac
Δ = 12-4·1·(-20)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-9}{2*1}=\frac{-10}{2} =-5 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+9}{2*1}=\frac{8}{2} =4 $

See similar equations:

| -4=5d+26 | | 1.25x=17.5 | | 13x3x=50 | | 0.9x+3-(2.1)=0 | | 9a+8=B | | 5x+37=2x-4 | | 8x-20+4x+32=180 | | -5x-5+-5(x=1) | | 0=0.1x^2+12x+36 | | 4(y+4)=-2(5y-7)+8y | | 3u-6+2(4u+2)=-5(u+4) | | x^2-6x+2=10 | | 6(u-5)-4=-6(-4u+7)-4u | | (x-4)-12=20x-108 | | (8x^2+30x+27)(x^2-38x-80)=0 | | B+19+3b-47+36=180 | | 125^-2x=625^3x | | 4t-42+5t-10+34=180 | | X+32+5x-20+6x=180 | | 30/c=4 | | -2.5x-10.5=17 | | 33x2-10=17 | | 2^(2x+3)=512 | | 4s-3+7s+43=180 | | 18x-(-2x)-12x=-16 | | 180=100+3x+1x | | 180=2x+1x | | 32-10t=t2 | | 180=50+2x+2x | | 15y-8=12y+13 | | Y=150(2)^x | | 22.4+2y+114=180 |

Equations solver categories