If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r2+1=61
We move all terms to the left:
r2+1-(61)=0
We add all the numbers together, and all the variables
r^2-60=0
a = 1; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·1·(-60)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*1}=\frac{0-4\sqrt{15}}{2} =-\frac{4\sqrt{15}}{2} =-2\sqrt{15} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*1}=\frac{0+4\sqrt{15}}{2} =\frac{4\sqrt{15}}{2} =2\sqrt{15} $
| -4|4m-2|+4=-8 | | -6(x-6x)-125=79 | | n+4n=62 | | n+4n=62.22 | | -5v-7=28 | | r2+12=61 | | 18x+7-14+(-6x)-10=-13 | | 10-(2z-7)=8-3z | | -6(z+2)+3(4z-6)=5(z-4)+13 | | -6d-20=-2d+4(1-3d) | | r2+1^2=61 | | X(x+3)=1330 | | X+(2x-40)+(3x-50)=15002 | | -2(-4x-1(-x+3=-30 | | X^2+5=5x^2+33 | | x+32=20+16 | | 5x^2+3x-5=3x+40 | | 8p+6p=28 | | 2*3x=143 | | 3y-36=-3(y+4) | | 3y-36=-3(y+ | | 2.6a=6.24 | | 18/23=x/45 | | C=5x+100 | | 20x-19x=4 | | 3.t7=15.17 | | 14/27=x/12 | | +0.66x-0.66x=0 | | -2/3x+2/3x=0 | | 2x=1+x,x= | | 14a-7a-4=3 | | 2×+16=4-x |