If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+7=87
We move all terms to the left:
n2+7-(87)=0
We add all the numbers together, and all the variables
n^2-80=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $
| 15t2-26t-8=0 | | 2-6(2-x)=-22 | | -2(x-12)=10 | | 15t^2-8=0 | | 4(2+x)=4(2x-1)-8 | | 2=1b2 | | 4(3p+3)-10=-5 | | 2z+7=5z-8(z-4) | | 4x-11=4x+11 | | √(5x)-7=2x-16 | | 5x-34=-2x | | 101=-5d+6 | | 26+n=264 | | a^2=4a+12 | | 7x+2=87 | | 7x+2=97 | | 3p+13=5 | | 24/56=3/x | | 3(4x–1)2=27 | | (6r+7)(r-2)=0 | | 6t+18=t+816+t−6166t+18=t+816+t-616 | | |6−5x|+2=18 | | -4x+3=45 | | m/20-2=4 | | x/13=33/39 | | 4k-3(2k-3)=45 | | 4(3p+13)=20 | | 4x+2=(8 | | 20x-14=86 | | 11+b=11+b | | 8x-6=10(x-1) | | 5x-7/2=19 |