If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+3)=54
We move all terms to the left:
n(n+3)-(54)=0
We multiply parentheses
n^2+3n-54=0
a = 1; b = 3; c = -54;
Δ = b2-4ac
Δ = 32-4·1·(-54)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-15}{2*1}=\frac{-18}{2} =-9 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+15}{2*1}=\frac{12}{2} =6 $
| 150=6(3n+7) | | 2u=- | | x/100=60/75 | | 60/75=x/100 | | 6=3+2x+5 | | P=(x,1/2) | | 12(12+2x+5)=14(14+2x+2) | | (x+1)/(21)=(2)/(x) | | X2-(3+√5)x+3.√5=0 | | x+3x+3x-10+3x-10/2=495 | | 5^(2x)=35 | | 5x*2-6=144 | | 10a=-6-8 | | 4x-3+2x-1=180 | | (13-n)n=-48 | | 13n^2-n^2=-48 | | 3x/6+5=2/5 | | (3p-2)/4-(2p+3)/3=p/3-1 | | (2x+5)/(3x+1)=3/11 | | 5x+8x=182 | | 206=(10(1+x))/(0.08-x) | | n×15=60×2 | | 1x+3x+(3x-10)+((3x-10)/2)=495 | | D²(D²+2D)²y=0 | | 1.3x=19 | | 15-5y=6y-7 | | 3(4x-1)=7x+12 | | (X+3)^2+x(x+5)-39=0 | | 4^x+6^(x+1)=72 | | 4^x*6^{x+1}=72 | | 4x/x+2-3/2x=0 | | 0=7/3x-7 |