If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m(m-11)=0
We multiply parentheses
m^2-11m=0
a = 1; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·1·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*1}=\frac{0}{2} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*1}=\frac{22}{2} =11 $
| -1n-1+4n=10 | | 4x+228=360 | | 60/r=12 | | 8d+20d+-16d=12 | | 12x+228=360 | | 3x+16=19-3x | | x*x+x*x+2x+1=244 | | 2=1-5(x-7) | | 0n+n-5=1 | | 4x+200=360 | | -80x+12x^2+96=0 | | 3x+x+2/3×=28 | | 3(y+2)+2(y-5)=15 | | 4y-11=45 | | 3(1+5x=1-(x-3) | | 9k−4+1=2k−3+7k | | 4n-32=8-n | | 3(1+5x)=1-(x-3 | | 2y-20=36 | | H(x)=x^2+4x+7 | | z^2-z=56 | | (5x/7)+2=27 | | 33=6p+9 | | 1-2(x-6)=6 | | z+4(2z-3)=15 | | 3x–2(4x+5)=x+2 | | -6x-7=-3x+8 | | 3+10q-3q2=0 | | 2x-7x+1=0 | | 45=10x^2 | | 9+3y=4y+2 | | 65=2x+10 |