If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3+10q-3q^2=0
a = -3; b = 10; c = +3;
Δ = b2-4ac
Δ = 102-4·(-3)·3
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{34}}{2*-3}=\frac{-10-2\sqrt{34}}{-6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{34}}{2*-3}=\frac{-10+2\sqrt{34}}{-6} $
| 2x-7x+1=0 | | 45=10x^2 | | 9+3y=4y+2 | | 65=2x+10 | | 4/m= 36/18 | | 5r-15=4r-4 | | 18=9f-4f | | 8(^x)=32 | | 4-(2-3x)=1 | | 5x-3x+8=3x-2(x-1) | | 2y-4y=-31 | | .0075*x=2 | | 8+3=12v | | 6(x-3)=11x+7 | | -6(-2n-10)+4n=5(n+2) | | X+4+x+2=90 | | 30=5(9h-3) | | 2-(2-4x)=3 | | 13x-9=19–16+x | | 5p=8+4 | | 5+4p=5+10 | | -32+7z=3(2z+7) | | -7x=-15-4x | | 2f=-10−3f | | 8+6h=9h+5 | | 1.2x=2x | | -8r+7-5r=-19 | | -6x-5)=-6x+13 | | -7=4y+ | | -7h−3=-6h | | -7+4y=5y | | 15=4x+6x+3-8 |