If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j2=16
We move all terms to the left:
j2-(16)=0
We add all the numbers together, and all the variables
j^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| 6(x+3)+3=7x+5 | | X+3x+3x-40=260 | | 7–2(x–8)=–3(2–x)–1 | | s2=25 | | 3(d+(-13)+d=9 | | 0.667m+1=-3 | | p2=64 | | x+2x+(x+100)=90 | | j2=121 | | 11+5=2(-x+5)-27 | | 2x4=3x+1 | | 58x-42=180 | | u2=100 | | 4=t2 | | 34=-5x-1 | | 3(x+2)=4(X+10 | | 3(6=2x)=8(5x+6)-4x | | 9=w2 | | 74+32+4x-22=180 | | 10x=4x-20 | | (2/7)*x=-4 | | 3x+15+5x-18=45 | | 4(3x-4)=6x-7 | | q2=121 | | 180=18y | | -4v+5=121 | | (4x)+(5x-15)+x=180 | | 40=1.245x-3.684 | | 121=-5+6-4v+5 | | b=4÷13 | | -3x+-9=-3 | | 180=7x+96 |