If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j2=121
We move all terms to the left:
j2-(121)=0
We add all the numbers together, and all the variables
j^2-121=0
a = 1; b = 0; c = -121;
Δ = b2-4ac
Δ = 02-4·1·(-121)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22}{2*1}=\frac{-22}{2} =-11 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22}{2*1}=\frac{22}{2} =11 $
| 11+5=2(-x+5)-27 | | 2x4=3x+1 | | 58x-42=180 | | u2=100 | | 4=t2 | | 34=-5x-1 | | 3(x+2)=4(X+10 | | 3(6=2x)=8(5x+6)-4x | | 9=w2 | | 74+32+4x-22=180 | | 10x=4x-20 | | (2/7)*x=-4 | | 3x+15+5x-18=45 | | 4(3x-4)=6x-7 | | q2=121 | | 180=18y | | -4v+5=121 | | (4x)+(5x-15)+x=180 | | 40=1.245x-3.684 | | 121=-5+6-4v+5 | | b=4÷13 | | -3x+-9=-3 | | 180=7x+96 | | k+38+7k=8(k+4)+6 | | -6=2y+9y-19 | | 2x²+3x+2=0 | | 12x5+3x-5= | | y2−6y=16 | | 125^(x-3)=1/25 | | 5,7x+11.8=1.3x+29.4 | | x-8x=56 | | b=4/13 |