If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2=121
We move all terms to the left:
q2-(121)=0
We add all the numbers together, and all the variables
q^2-121=0
a = 1; b = 0; c = -121;
Δ = b2-4ac
Δ = 02-4·1·(-121)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22}{2*1}=\frac{-22}{2} =-11 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22}{2*1}=\frac{22}{2} =11 $
| 180=18y | | -4v+5=121 | | (4x)+(5x-15)+x=180 | | 40=1.245x-3.684 | | 121=-5+6-4v+5 | | b=4÷13 | | -3x+-9=-3 | | 180=7x+96 | | k+38+7k=8(k+4)+6 | | -6=2y+9y-19 | | 2x²+3x+2=0 | | 12x5+3x-5= | | y2−6y=16 | | 125^(x-3)=1/25 | | 5,7x+11.8=1.3x+29.4 | | x-8x=56 | | b=4/13 | | 4(2x2)=3x+18 | | b=4÷$13 | | 180=44+8x+7x | | 58x+42=180 | | 3(4x-15)=7x | | 4x+240=720 | | -1=-19x | | 360=44+8x+7x | | 8x40=2x+100 | | 15a+3(3a+4)=6 | | 6r+5=108 | | 12b+b+7b-18-4= | | -4(1-6x)-8=156 | | 15a(3a+4)=6 | | 15t2+19t-50=0 |