g(2)=2(2)+3/(2)-4

Simple and best practice solution for g(2)=2(2)+3/(2)-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for g(2)=2(2)+3/(2)-4 equation:



g(2)=2(2)+3/(2)-4
We move all terms to the left:
g(2)-(2(2)+3/(2)-4)=0
We add all the numbers together, and all the variables
g2-(3/2+18)=0
We add all the numbers together, and all the variables
g^2-(3/2+18)=0
We get rid of parentheses
g^2-18-3/2=0
We multiply all the terms by the denominator
g^2*2-3-18*2=0
We add all the numbers together, and all the variables
g^2*2-39=0
Wy multiply elements
2g^2-39=0
a = 2; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·2·(-39)
Δ = 312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{312}=\sqrt{4*78}=\sqrt{4}*\sqrt{78}=2\sqrt{78}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{78}}{2*2}=\frac{0-2\sqrt{78}}{4} =-\frac{2\sqrt{78}}{4} =-\frac{\sqrt{78}}{2} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{78}}{2*2}=\frac{0+2\sqrt{78}}{4} =\frac{2\sqrt{78}}{4} =\frac{\sqrt{78}}{2} $

See similar equations:

| 7m+53=14-6m | | n/5+7=12 | | 3x(5)=-6 | | 5=6p-7= | | -3-10×=25+4x | | (x+7)3-6=2x | | -7=1+2r | | 15=-3(z+2)+1 | | X(2x-3)÷2=4.5 | | 6(k+4)-(-2)(k+5)+8=3(k+1)-9 | | m/4+7=7 | | -20=1-7t= | | 151/2=x3 | | 7(x+4)=x-8 | | 1/2(6x+10)-4=-1/4(20x-8) | | c/7+15=22 | | x/(x-6)=1,11 | | 11/16=–13/12p | | 14=-3y-1 | | 3=1+4s | | 7r=5r= | | 81=29^x | | 3(p-15)=13.5 | | x-15(-7)=-105 | | k/2=22 | | 3(c-5)=6+2(c-7) | | 5q-4=17 | | 4(3w-2)=8(2w+2) | | 9k-25=17 | | 2/x+2=3/2x+17/8 | | 101-(5x+9)=5(x+3)+x | | -3v-9=2 |

Equations solver categories