c-1/5c=63.60

Simple and best practice solution for c-1/5c=63.60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c-1/5c=63.60 equation:



c-1/5c=63.60
We move all terms to the left:
c-1/5c-(63.60)=0
Domain of the equation: 5c!=0
c!=0/5
c!=0
c∈R
We add all the numbers together, and all the variables
c-1/5c-(63.6)=0
We add all the numbers together, and all the variables
c-1/5c-63.6=0
We multiply all the terms by the denominator
c*5c-(63.6)*5c-1=0
We multiply parentheses
c*5c-318c-1=0
Wy multiply elements
5c^2-318c-1=0
a = 5; b = -318; c = -1;
Δ = b2-4ac
Δ = -3182-4·5·(-1)
Δ = 101144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{101144}=\sqrt{4*25286}=\sqrt{4}*\sqrt{25286}=2\sqrt{25286}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-318)-2\sqrt{25286}}{2*5}=\frac{318-2\sqrt{25286}}{10} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-318)+2\sqrt{25286}}{2*5}=\frac{318+2\sqrt{25286}}{10} $

See similar equations:

| 4.8s-7.6=1.2s+15.5 | | 77+3x-1=180 | | 3u+11=16 | | 1400=2(3^x) | | 85=5v-15 | | 2(x-3)=3(x-2)+3 | | (11x+2=)+(9x-4=) | | 8(x+2)+2x=24 | | 0.4(g-9)=0.6(g-2) | | O.4x+2.9=1.5 | | 1/2(5x+3)+4x=6x+8 | | 2t-8=3-(3t+1) | | 6x+18+10x+15=180 | | 125.6=3.14r^210 | | 16-x^2=190 | | 4w−3=17 | | 15t=18(t+1/2) | | 76-x+17+14x=25-7x | | 13x+(-29)+(-11x)=0 | | 11x+7+12x-1=90 | | 18x+38-x-11=146 | | 6/f+2=2/f-1 | | -6+5x=-4+14x | | 5x+6x+5=12 | | 2w+9=43 | | 3a-1/4=a/2 | | 0=a(-1+3)(-5+4) | | Y=10(1.25^x) | | 18-(x)=95 | | X-(x*0.15)=10.37 | | u-6.1=2.28 | | X-x*0.15=10.37 |

Equations solver categories