b+3/2b+(b+25)+(2b-90)+90=540

Simple and best practice solution for b+3/2b+(b+25)+(2b-90)+90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+3/2b+(b+25)+(2b-90)+90=540 equation:



b+3/2b+(b+25)+(2b-90)+90=540
We move all terms to the left:
b+3/2b+(b+25)+(2b-90)+90-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+3/2b+(b+25)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+25-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+25*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+50b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-1030b+3=0
a = 8; b = -1030; c = +3;
Δ = b2-4ac
Δ = -10302-4·8·3
Δ = 1060804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1060804}=\sqrt{4*265201}=\sqrt{4}*\sqrt{265201}=2\sqrt{265201}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1030)-2\sqrt{265201}}{2*8}=\frac{1030-2\sqrt{265201}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1030)+2\sqrt{265201}}{2*8}=\frac{1030+2\sqrt{265201}}{16} $

See similar equations:

| r/13=12 | | 4+m/3=7 | | 10x-4x-8=-20 | | 4+4r=1+5r | | y/5-11=29 | | 5x+6=1x+5 | | 2(6p-5)=3(p-8)-1 | | -4+7x=5.5x+5 | | 5x+6=1x+ | | -10+2y=0 | | 6a-6a+10=10 | | -15=7-c | | 2-h/3=2 | | -8=2-4y | | 8(x-3)+8=7x+11 | | -5(-2m-7)=3m-14 | | 6a+7=3a+2 | | 6a+7=3a=2 | | 6=x+1+5 | | 8=2-4y | | 6b+30=6(5b+1) | | 3x-15+2=2x | | 7-3v=7-5v | | 5x-12+7x=4(4x-4)+2 | | 5+c/3=6 | | 5x-15=5x-20 | | x+15+2x+28=13x | | (B+45)+(2b-90)+3/2b+90+b=540 | | (10x/4)=2x+3 | | 8-3/8w=-9 | | 6n-4-4=16 | | 2+-4y=14 |

Equations solver categories