If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(+45)+(2B-90)+3/2B+90+B=540
We move all terms to the left:
(+45)+(2B-90)+3/2B+90+B-(540)=0
Domain of the equation: 2B!=0determiningTheFunctionDomain (2B-90)+3/2B+B+90-540+(+45)=0
B!=0/2
B!=0
B∈R
We add all the numbers together, and all the variables
(2B-90)+3/2B+B+90-540+45=0
We add all the numbers together, and all the variables
B+(2B-90)+3/2B-405=0
We get rid of parentheses
B+2B+3/2B-90-405=0
We multiply all the terms by the denominator
B*2B+2B*2B-90*2B-405*2B+3=0
Wy multiply elements
2B^2+4B^2-180B-810B+3=0
We add all the numbers together, and all the variables
6B^2-990B+3=0
a = 6; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·6·3
Δ = 980028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980028}=\sqrt{36*27223}=\sqrt{36}*\sqrt{27223}=6\sqrt{27223}$$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-6\sqrt{27223}}{2*6}=\frac{990-6\sqrt{27223}}{12} $$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+6\sqrt{27223}}{2*6}=\frac{990+6\sqrt{27223}}{12} $
| (10x/4)=2x+3 | | 8-3/8w=-9 | | 6n-4-4=16 | | 2+-4y=14 | | -8+6p=5(5p+6) | | u/4-9=30 | | (3x+4)°+(4x+2)°=180 | | -1(v+4)+5=$v+1-5v | | 6+3x-15=5x-2(4-x) | | 4c-9=6c+25 | | 10(x-1)=10x-20+10 | | 10x+7=−9x+121 | | 11x-3+9x+13=180 | | 4x-8(2x-8)=28 | | 2x+12=3x^2-108 | | -r+12=5r-4r | | 3x+14=-5x+7 | | -3x+14=5x+7 | | -(1/3)(5x-6)=(2x+5) | | 3x+14=5x+7 | | 2/3q+7=7 | | x+7=-2x+28 | | -4+4(-3x-1)=-5x-3(6+4x) | | 17=45-j | | 2x+16+7=x+16 | | 7x-12=-(3x-4) | | 2(3)+3y=33 | | 4x+2=1/2x+17= | | z+39=72 | | 3(x-2)=24+3x | | -24=3+x | | 7x÷18+8x+7=180 |