If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+(2b-90)+90+3/2b+(b+45)=540
We move all terms to the left:
b+(2b-90)+90+3/2b+(b+45)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(2b-90)+3/2b+(b+45)-450=0
We get rid of parentheses
b+2b+3/2b+b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 4(x+13)-2x+8=28 | | 35=-2x-12 | | (8x-34)=5x+2 | | (p-4)^2-16=0 | | 4x-6x+5=3x-10 | | -13w+2=10w+30 | | 1x-7=1-8x+7x+8 | | 7a+3=3a-10 | | 2x+8-1=33 | | 8k+8=144 | | 4u-13u-19=73 | | 18+81=6a+8 | | 9m^2-27m+14=0 | | 8-5*n=3.25 | | 4x+36=2x+2 | | x/5+1=-11 | | (4/5t)=-4 | | 90+5+60+w=180 | | 14+(27+m)=0 | | (p+54)+16=0 | | 9z-z=-1+5z-1-4 | | 3x-12=44 | | 4y-4×8=9y+5×8-117 | | b+(2b-90)+(b+45)+3/2b+90=540 | | (9x)+(5x+28)=0 | | 4=x- | | 4(6x+2)=25 | | 5/n=n/8 | | b|13-3b|13=8|13 | | 8-5n=-9 | | –10y=–120 | | x-7/2x+1=x-4/x |