If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+(2b-90)+(b+45)+3/2b+90=540
We move all terms to the left:
b+(2b-90)+(b+45)+3/2b+90-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(2b-90)+(b+45)+3/2b-450=0
We get rid of parentheses
b+2b+b+3/2b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| (9x)+(5x+28)=0 | | 4=x- | | 4(6x+2)=25 | | 5/n=n/8 | | b|13-3b|13=8|13 | | 8-5n=-9 | | –10y=–120 | | x-7/2x+1=x-4/x | | x+(x•6=35 | | 6+7k=-1k-10 | | 2v-6=6v-2 | | -2+x+5=3-(1-2x | | x-20=x4-10 | | 2/3(d+9)=-6 | | 6a-11=-3a+25 | | 1x^2+6x-216=0 | | x-10=x-20 | | 7v+5=12+6v | | m–11=17 | | 8-4=-3b | | 190=109-x | | 6-x-5=3 | | 3(2x-5)-18=19 | | h/2+6=10 | | 2-3n+4n=0 | | -2-6n=-20 | | ((x+2)+(x+6))/2*x=32 | | F=1.8(k-23.15)+32 | | 18x=3.6 | | 5(2.95+m)=47.75 | | 2d=6+d | | 3y=342 |