x-7/2x+1=x-4/x

Simple and best practice solution for x-7/2x+1=x-4/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-7/2x+1=x-4/x equation:



x-7/2x+1=x-4/x
We move all terms to the left:
x-7/2x+1-(x-4/x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x-7/2x-(+x-4/x)+1=0
We get rid of parentheses
x-7/2x-x+4/x+1=0
We calculate fractions
x-x+(-7x)/2x^2+8x/2x^2+1=0
We add all the numbers together, and all the variables
(-7x)/2x^2+8x/2x^2+1=0
We multiply all the terms by the denominator
(-7x)+8x+1*2x^2=0
We add all the numbers together, and all the variables
8x+(-7x)+1*2x^2=0
Wy multiply elements
2x^2+8x+(-7x)=0
We get rid of parentheses
2x^2+8x-7x=0
We add all the numbers together, and all the variables
2x^2+x=0
a = 2; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·2·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*2}=\frac{-2}{4} =-1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*2}=\frac{0}{4} =0 $

See similar equations:

| x+(x•6=35 | | 6+7k=-1k-10 | | 2v-6=6v-2 | | -2+x+5=3-(1-2x | | x-20=x4-10 | | 2/3(d+9)=-6 | | 6a-11=-3a+25 | | 1x^2+6x-216=0 | | x-10=x-20 | | 7v+5=12+6v | | m–11=17 | | 8-4=-3b | | 190=109-x | | 6-x-5=3 | | 3(2x-5)-18=19 | | h/2+6=10 | | 2-3n+4n=0 | | -2-6n=-20 | | ((x+2)+(x+6))/2*x=32 | | F=1.8(k-23.15)+32 | | 18x=3.6 | | 5(2.95+m)=47.75 | | 2d=6+d | | 3y=342 | | 1+5x+3x=-15 | | 0.7+9.1=2z | | .174=54.61x+0.08 | | 90+2x+3x+5=180 | | 3x-x-6=18 | | -6-7k=29 | | -4n+8n=-10+6n | | 2a=50/11*3 |

Equations solver categories